Case Study

Infrastructure
Technology
VEREL I

Ansible & Github

The Client

An Italian multinational banking group head-
quartered in Milan. Listed as one of the most
important 30 financial institutions worldwide.

The Challenge

The client was facing inefficiencies in the
validation and deployment of Ansible play-
books and roles across multiple teams and
repositories. Manual linting and testing were
time-consuming, prone to human error, and
lacked standardization, leading to inconsistent
code quality and delayed delivery cycles.
Additionally, the absence of a robust automa-
tion pipeline made it difficult to maintain com-
pliance and reliability across environments.

Business Outcome

Increased Efficiency & Reduced Manual
Effort: The client achieved significant time
savings by eliminating manual linting and
testing processes, freeing up engineering
resources for higher-value activities

BUILDING GREAT TECHNOLOGY

Enhanced Code Quality & Compliance: Auto-
mated linting and Molecule tests ensured that
all Ansible code adhered to industry best
practices and internal standards, reducing the
risk of configuration drift and production
issues.

Improved Developer Experience: Teams bene-
fited from immediate feedback on code issues
within the development lifecycle, leading to
quicker resolution of defects and smoother
code reviews.

Standardized Workflow Across Teams: Estab-
lished a uniform, scalable, and repeatable
testing framework that could be easily adopted
across all teams and projects within the organi-
zation.

over 120%

Deployment rate

www.sorint.com



Technical Solution

Automating Playbook and Role Testing using Ansible-lint

Solution

Developed a fully automated solution
leveraging Ansible-lint integrated with
GitHub APIs

Implementation
Created a modular playbook that dynami-

cally connects to GitHub, retrieves all
relevant YAML/Ansible files from speci-
fied repositories and organizational units

Logic

Implemented logic to parse directory
structures and selectively lint only Ansi-
ble-specific YAML files, skipping irrele-
vant configurations

CI/CD Pipeline with Molecule Testing

Solution

Architected and implemented a CI/CD
pipeline using GitHub Actions to execute
Molecule testing frameworks.

Logic

The pipeline was designed to automati-
cally trigger upon code commits, pull
requests, or manual invocations

Integration

Integrated Molecule with drivers such as
Docker to enable fast and isolated testing
environments for Ansible roles and play-
books

BUILDING GREAT TECHNOLOGY

Integration

Integrated linting into a scheduled auto-
mation process that runs periodically or
on specific triggers (e.g., code commit).

Validation

The linting results were captured and
stored at repository level for visibility by
developers and release managers for
desired actions

Result

This automation not only identified syntax
issues but also enforced best practices
and policy compliance across all Ansible
codebases

Customized pipline
Each pipeline stage executed disinct test
phases:
Lint Phase: Ansible-lint check as an early gate.
Dependency Phase: Automatic dependency resolution and
installation via Ansible Galaxy or internal artifact repositories
Converge Phase: Applied the role/playbook to a test
container
Verify Phase: Custom verification tasks using Testinfra to
assert the final state of the infrastructure

Cleanup Phase: Removal of test containers and resources

Validation

Pipeline also included artifact retention
(logs, reports) and notifications (Email)
upon completion, ensuring feedback
loops were fast and actionable.

www.sorint.com



